What makes a good laboratory learning experience?
(Evidence from the students’ perspective)

Scott Kable, et al.
School of Chemistry
Univ. of Sydney

Australasian Chemistry Enhanced Laboratory Learning Project

Directors: Simon Barrie (ITL, Sydney)
Bob Bucat (Chem, UWA)
Mark Buntine (Chem, Adelaide)
Geoff Crisp (ITL, Adelaide)
Adrian George (Chem, Sydney)
Ian Jamie (Chem, Macquarie)
Scott Kable (Chem, Sydney)

Assoc. Dir. Justin Read (almost PhD in Chem. Ed., U.Syd.)

>30 partner universities in Australia / NZ

Description of problem

Some “facts”:

- 35 Australian universities teach chemistry - at least to First Year.
- ~20,000 students per year take these courses.
- Laboratory training is an ESSENTIAL component in chemical education.
 - RACI accreditation = 350 hours / year

Laboratories

Chemistry is particularly vulnerable to student discontent in the laboratory

- Arcane concepts
- Perceived lack of relevance
- Reliance on expensive instrumentation that not all departments can afford
- Boring and/or repetitive

History of APCELL

- Project began 1999
 - Physical Chemistry focus
- Potential benefits from lab work
 - Develop technical skills
 - Make theory more concrete
 - Engage students in the practices of science
- Challenge: Providing a lab program that
 - Demonstrably lives up to its potential
 - Doing so within existing constraints

Outcomes of APCELL

- Database of educationally validated experiments
- The Educational Template
- Workshops at Aust. Phys. Chem. and Chem. Ed. conferences
- Collaboration with the Australian Journal of Education in Chemistry
- Uptake of experiments and methods by Chemistry departments
- Network of academics and students
- Communication
Refereeing and Publications

All of Chemistry – ACELL

Three principal aims
- Database of educationally and chemically sound experiments, that have been tested by both academic staff and students
- Provide for professional development of chemistry academic staff
- Facilitate the development of a chemistry education community of practice

February 2006 ACELL Workshop

- 33 academic staff (+8 Directors)
- 31 undergraduate students
- 27 universities from across Australia and New Zealand
- 33 experiments

⇒ 3 very full days

This addressed one of the "issues" in laboratory development raised this morning

Impact of ACELL workshop...

"The ACELL Project: Student participation, professional development, and improving laboratory learning"

Justin READ and the rest of the ACELL team

Thurs, 10:45am, Room 311

The Educational Template (Bridging Ed. and Chem.)

Section 1: Summary of the Experiment
Section 2: Educational Analysis (staff and student perspective)
 - What are the intended learning outcomes
 - How the outcomes are achieved
 - How the outcomes are monitored
Section 3: The Student Learning Experience
Section 4: Documentation
 - Student notes, demonstrator notes, technical notes, etc
Section 5: Peer Assessment Criteria

The "Student Learning Experience" Instrument

- Thoughtfully designed to test the educational issues expounded in the Educational Template
 - should serve to improve the student experience via aspects of education theory that the teacher has been exposed to and trained in.
- Questions reflect current educational theories
 - Interest, content knowledge, generic skills, discipline skills
 - diagnosed in "everyday" language
- Validation
 - 2 A(P)CELL workshops and 3 iterations
 - ongoing process
- 3 different metrics:
 - 14 x Likert questions
 - 5 x open ended questions
 - recorded interviews
14 Likert items:

Q1: This experiment has helped me to develop my data interpretation skills.
Q2: This experiment has helped me to develop my laboratory skills.
Q3: I found this to be an interesting experiment.
Q4: It was clear to me how this laboratory exercise would be assessed.
Q5: It was clear to me what I was expected to learn from completing this experiment.
Q6: Completing this experiment has increased my understanding of chemistry.
Q7: Sufficient background information, of an appropriate standard, is provided in the introduction.
Q8: The demonstrators offered effective support and guidance.
Q9: The experimental procedure was clearly explained in the lab manual or notes.
Q10: I can see the relevance of this experiment to my chemistry studies.
Q11: Working in a team to complete this experiment was beneficial.
Q12: The experiment provided me with the opportunity to take responsibility for my own learning.
Q13: I found that the time available to complete this experiment was:
Q14: Overall, as a learning experience, I would rate this experiment as:

Value for individual experiments...

Highlighting strengths and weaknesses:

Expt: "Investigation of rotation of plane polarised light using a home-made polarimeter"

Q10: "I can see the relevance of this experiment to my chemistry studies"

Factors

What is the main factor, from the students' perspective, that correlates with this overall experience?

Q1: Developing data interpretation skills
Q2: Developing laboratory skills
Q3: Interest
Q4: Clear assessment
Q5: Clear learning objectives
Q6: Increased chemistry understanding
Q7: Sufficient/appropriate background
Q8: Effective demonstrators
Q9: Good prac notes
Q10: Relevance to chemistry studies
Q11: Developing teamwork
Q12: Responsibility for own learning
Q13: Sufficient time to complete

The dataset

- 12 experiments
- surveyed in 6 different universities (same instrument)
- across all of chemistry (discipline and level)
- paper + web surveys
- combination of ACELL and "other" experiments
- 642 responses overall (min = 17, max = 143, av = 53)
Background

APCELL

Outcomes ACELL

Research Summary

27-Sept-2006

Strongly correlated

- "I found this to be an interesting experiment"

\[Y = -0.17 + 0.70 X \]

\[R^2 = 0.81 \]

- "Completing this experiment has increased my understanding of chemistry"

\[Y = -0.46 + 1.06 X \]

\[R^2 = 0.84 \]

- "The experiment provided me with the opportunity to take responsibility for my own learning"

\[Y = -0.98 + 1.38 X \]

\[R^2 = 0.79 \]

Weakly correlated

- "This experiment has helped me to develop my laboratory skills"

\[Y = -0.42 + 0.72 X \]

\[R^2 = 0.19 \]

- "Working in a team to complete this experiment was beneficial"

\[Y = -0.32 + 0.50 X \]

\[R^2 = 0.21 \]
Overall correlation:

Strong correlation ($R^2 > 0.75$)
- Interest, chemistry learning, data manipulation, own learning

Medium correlation ($0.5 \leq R^2 < 0.75$)
- Assessment, learning obj., proc notes, relevance

Weak correlation ($R^2 < 0.5$)
- Demonstrators, lab skills, teamwork, background info

Summary

- Database of student-tested, educationally sound undergraduate experiments
 - 30 under review, aim is to have >50 reviewed by mid-2007
- Professional development of delegates
- Provision of educational resources
- Building a community of practice
- Conducting research into student learning
- A model for other countries and domains
 - being trialled in immunology at U. Adelaide

Acknowledgements

"The Team"

Sydney:
- Justin Read
- Simon Barrie
- Adrian George

Adelaide:
- Mark Bunin
- Geoff Crisp

Macquarie:
- Ian Jamie

Western Australia:
- Bob Busut

Acknowledgements

Staff and student delegates
HREC at the University of Sydney

Funding and support

Australian Government
Department of Education, Science and Training

Royal Aust.
Chem. Institute

The ACELL Website

- Experiments and their documentation
- Publications, including published papers
 - 13 published experiments from ACELL
- Information on ACELL events
- Education resources for ongoing professional development
 - Process information - content analysis
 - Theory information - constructivism

http://acell.chem.usyd.edu.au