Promoting and carrying out research in science education.

A/P Mary Peat and A/P Ian Johnston
University of Sydney, Australia

First requirement: Institutional Support

- Research intensive university
- Nexus between teaching & learning
- Scholarly activities in T&L
- Promotion guidelines include teaching performance

The cultural change encouraged by these activities is a slow process but it is happening.

At the Faculty of Science level

- First to create a T&L committee
- First to offer teaching awards
- First to offer teaching development grants

On the basis of nearly ten years of encouraging scholarly developments, Faculty set up a research group, SciFER. The mission is to work collaboratively, investigating issues of student learning.

Faculty Teaching Development projects (2000-2004)

- Resources e.g. CDROMs,
- Web assessment materials, especially formative assessment
- Web learning modules
- Virtual Learning Environments
- PBL developments
- Collaborations with Uni Melbourne in chemistry
- Benchmarking between national unis

SciFER Research Projects (2000 - 04)

- How tertiary-level students learn and conceptualise quantum mechanics
- Integration of science courses in first year
- Role of memorising in learning science
- Development of an instrument to test the transferability of mathematical skills
- First Year Student Experience in Physics and Biology: the 2001-2002 HSC Syllabus changeover
- Learning from feedback: student interpretation and use of feedback on first year assignments
- Role and use of educational multimedia and communications technologies

UniServe Science 1995 -2004

- Originally national focus & 3 years national funding
- Continues to promote innovation in teaching (Newsletters)
- Move to support scholarly investigations into science teaching (Conference)
- Work within NSW School system (Syllabus Resources)
- Teaches in Professional Development Programs (China Science Program)
- Significant role in project management (Skills; Tutor Training; Service Teaching)

Moved from a show and tell clearinghouse to an organization involved in encouraging and supporting scholarly enquiry into T&L
Research in Biology Education & Training

• Set up in 2000 in response to a review of the School
• Mission statement includes investigation of ways of teaching that will lead to learning improvements
• Projects include:
 – HSC syllabus changes
 – Attitudes to science writing
 – Learning from feedback
 – Evaluation of non-traditional teaching materials
 – Use of ICT materials/online resources in learning

RIBET has established educational research within a science discipline at the University that is successful and productive.

Sydney University Physics Education Research

• SUPER group established 1993
• Set up within the School of Physics.
• Graduate students gain degrees (MSc and PhD) in physics, not education.

Questions that had to be answered at the start.

• Is education research useful to a physics department?
• Is it best done in a physics department or an education faculty?

Is physics teaching in conflict with education research?

• Innovative methods are rarely used.
• Scientists mistrust the methods of education research.
• University teachers have ownership of their courses.
• The process of teaching cannot be divorced from the content.

Education research has much to offer physics teaching

• Learning theories can help teachers guide their students’ learning.
• Teaching strategies can give teachers different ways of achieving learning.
• New technologies can expand the experiences students learn from.

This research can best be done in a physics department

• Learning science is different from other learning.
• There are teaching strategies uniquely suited to physics.
• The way information technology is used can be discipline-specific.
Educational Research Guidelines

• Important principles:
 – For science discipline teachers, such research is informed by personal teaching experiences
 – Reflective teaching and learning offers basic research questions
 – Choice of methodology will reflect one’s comfort zone in the social sciences

Types of research methodologies

• Quantitative methods
 – within our comfort zone; answers questions that are numerical in style; looking for statistical analysis e.g. “how many”?

• Qualitative methods
 – Less within our comfort zone; asks questions more concerned with understanding perceptions of the world; looking for insight rather than statistical analysis e.g. “why; how; when”?

Examples of qualitative methods

• Action research model
 – Uses a cycle of plan, act, describe, review

 Thus this is emergent and iterative

• Case study method
 – Observations of events, community, etc
 Collects extensive data to answer “how”, “who”, “why” questions

• Narrative enquiry model
 – Collection of stories, using interview techniques
 Collects extensive data on one or two events/people

Choosing the approach

<table>
<thead>
<tr>
<th>Quantitative Research</th>
<th>Qualitative research</th>
<th>Grounded theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature review</td>
<td>Literature review</td>
<td>Research question(s)</td>
</tr>
<tr>
<td>Research question(s)</td>
<td>Research question(s)</td>
<td>Research question(s)</td>
</tr>
<tr>
<td>Hypothesis</td>
<td>Choosing an approach</td>
<td>Design & choice of methods</td>
</tr>
<tr>
<td>Design & choice of methods</td>
<td>Design & choice of methods</td>
<td></td>
</tr>
<tr>
<td>Data collection</td>
<td>Data collection</td>
<td>Data collection</td>
</tr>
<tr>
<td>Analysis of findings & discussion</td>
<td>Literature review (again)</td>
<td>Analysis, discussion & literature review</td>
</tr>
<tr>
<td>Conclusions</td>
<td>Conclusions</td>
<td>Conclusions</td>
</tr>
</tbody>
</table>

Collection of data

Depends on the research you are doing

• Surveys – paper based; online; telephone
• Focus group meetings
• Online discussion boards
• Lurking online in course discussions
• Interviews – structured; unstructured; semi-structured
• Observations
• Diaries
• Anecdotal

Analysis of data

Depends on what sort of data you have collected

• Numeric analysis of scored data (general statistics)
• Content analysis
• Attitude scales Likert scales
• Differential scales
• Closed items
• Open ended items
Some methods of analysing data

- Paper-based questionnaires
 - Multiple choice (quantitative) statistics, correlations, etc
 - Open-ended (qualitative) phenomenology, phenomenography

Gathering information from a class survey

- Interviews
 - Are often used as a follow-up to information gathered some other way.

The transferrability of mathematical skills

SECTION A

1. Solve the following equations for \(x \):
 - \(x^2 = 8 \)
 - \(|x| = 3 \)
 - \(x^2 + 2x + 1 = 0 \)
 - \(2x + 3 = 4 \)
 - \(\log(x + 2) = 0 \)
 - \(x^2 - 1 = 0 \)

2. Negligible the expression:
 - \(x^2 + 2x + 1 \)
 - \(\log(2x + 3) \)
 - \(\log(x^2 + 2x + 1) \)

SECTION B

Certain bacteria in food are killed by heat. When a bacterial culture dies, the cell count decreases exponentially. Hence, the number of bacteria in the culture decreases by a factor of \(e \) after the bacteria is heated to a temperature of \(T \). Then,

\[n = n_0 e^{-kt} \]

where \(k \) is a positive constant which depends on the properties of the bacteria. The Oral Bacterial Reduction Time, \(t \), is the length of time required for the cell concentration to decrease to one-tenth of the original value at a given initial temperature \(T \).

1. Express \(k \) in terms of the bacterial reduction time \(t \).
2. The graph below shows how the cell concentration \(N \) (cell/ml) of the bacterium *Escherichia coli* increases in a medium of another cell before it increases exponentially.

![Graph showing cell concentration over time](image-url)
Some methods of analysing data

• Observations
 – Example: a project to evaluate teaching in a computer laboratory.

Gathering information for a course evaluation

<table>
<thead>
<tr>
<th>Task</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interviews</td>
<td>To define the objectives of the course in terms of teacher expectations, and to ascertain whether, and how well, those expectations were met.</td>
</tr>
<tr>
<td>Questionnaires</td>
<td>To determine the students' attitudes towards their own skills/knowledge, and to determine the effectiveness of the course.</td>
</tr>
<tr>
<td>Observation</td>
<td>To describe the students' performance and activities during the class.</td>
</tr>
</tbody>
</table>

Gathering information on computer usage

<table>
<thead>
<tr>
<th>Activity</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talking to tutor on task</td>
<td>30%</td>
</tr>
<tr>
<td>Talking to student off task</td>
<td>2%</td>
</tr>
<tr>
<td>Talking to tutor off task</td>
<td>9%</td>
</tr>
<tr>
<td>Operating hardware</td>
<td>8%</td>
</tr>
<tr>
<td>Reading screen</td>
<td>19%</td>
</tr>
<tr>
<td>Writing or drawing</td>
<td>14%</td>
</tr>
<tr>
<td>Reading a book</td>
<td>9%</td>
</tr>
<tr>
<td>Thinking</td>
<td>8%</td>
</tr>
<tr>
<td>Doing something else</td>
<td>1%</td>
</tr>
</tbody>
</table>

Some methods of analysing data

• Examination scripts
 – Example: investigating the correlation between qualitative understanding and marks in an exam.

Examination question

“In a spaceship orbiting the earth, an astronaut tries to weigh himself on bathroom scales and finds that the scale indicates a zero reading.

However, he is also aware that his mass hasn’t changed since he left the earth. Using physics principles, explain this apparent contradiction.”
Some methods of analysing data

- Concept maps
 - Example: investigating student understanding of physical optics.

Concept map items (Optics)

- amplitude, diffraction,
- frequency, electromagnetic field,
- intensity, interference,
- light, phase,
- polarisation, ray,
- reflection, refraction,
- refractive index, resolution,
- superposition, wave,
- wavefront, wavelength

Theories of learning

- To apply your research, you need a view about how students learn.
- In science teaching, main approaches are behaviourist or constructivist.
- Theoretical background is more important in an Education Faculty than in a science department.